Ocklynge Junior School

Progression in Fractions

Written by

Miss Shepherd and Mrs Quine

Key vocabulary when teaching fractions

Word	Definition	Example		
Fraction	A part of a whole number, quantity or shape. 2. Expressing a	I have shared my sweets into four equal parts.		
	division relationship between two integers in the form	Everyone will get a fraction of the whole quantity of		
	$\frac{a}{b}$	sweets. One group is a quarter of the whole		
Numerator	The number written above the fraction line in a fraction. It indicates the specified number of parts out of the whole. In a division contact, it is the dividend	In the fraction one quarter, one is the numerator.		
Denominator	The number written below the fraction line in a fraction. In a measure context, it indicates the number of equal parts into which the whole is divided. In a division context, it is the divisor.	In the fraction one quarter, four is the denominator.		
Unit fraction	A fraction with a numerator of one.	One-third is a unit fraction.		
Non-unit fraction	A fraction with a numerator greater than one.	Two thirds is a non-unit fraction.		
Equivalent	Equivalent means having the same value. Equivalent fractions have the same value.	$\frac{2}{4} = \frac{1}{2}$		
Proper fraction	A fraction with a value less than one.	$\frac{1}{2}, \frac{3}{4}, \frac{5}{8}$		
Improper fraction	A fraction where the numerator is bigger than the denominator. These fractions are therefore greater than one whole.	$\frac{12}{11}$		
Mixed numbers	Numbers consisting of an integer and fractional part.	$1\frac{1}{2}; 3\frac{3}{4}$		
Decimal fraction	A fraction expressed in its decimal form.	Half written as a decimal fraction is 0.5		
Proportion	A comparison between two or more parts of a whole or group. Proportion expresses a part-whole relationship. This may be represented as a fraction, a percentage or a decimal.	Two thirds of a class were boys. The proportion of the class that is girls is one third.		

<u>Counting in fractional steps</u>

Stage 4	Count up and down in hundredths	One Tenthundredth	Use a hundred square to shade in a sequence of hundredths.	As a class, count up and down in hundredths. Children to continue the following pattern: $1 \div 100 = \frac{1}{100}$, $2 \div 100 = \frac{2}{100}$, What do they notice? What is a hundredths? How many hundredths make up a whole?	Spot the mistake sixty hundredths, seventy hundredths, eighty hundredths, ninety hundredths, eleven hundredths and correct it.
		Using base 10, children can show counting in hundredths. Base 10 can also be used to show the			

		Re	cognising fractions		
	Objectives	Concrete	Pictorial	Abstract	Challenges
Stage 1	Recognise, find and name a half as one of two equal parts of an object, shape or quantity.	Cutting up objects (fruit, paper shapes, jaffa cakes) into halves and quarters. Finding a half and a quarter of an object (smarties, beads, multi- link Ink Tower).	Different representations of a half:	1/2 One half	Shading fractions of a range of shapes.
Stages 1	Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.	Cutting up objects into quarters. Finding a quarter of an object (smarties, beads, multi-link tower).		1 One quarter	Identifying halves and quarters from different representations.

٦

Г

	Recognise,			$\frac{1}{2}$ of 6 cubes = 3	
	find, name and write	Shacke a Shacke 7 Shacke a green Shacke 3		6 ÷ 2 = 3	Which of these shapes
tage 2	fractions $\frac{1}{3}$, $\frac{1}{4}$, $\frac{2}{4}$ and $\frac{3}{4}$ of a	Shope blue of this shape or	Where Co		are ½ green?
S	length, shape, set of objects or quantity				
Stage 2	Write simple fractions for example, $\frac{1}{2}$ of 6 = 3 and recognise the equivalence of $\frac{1}{2}$ and a $\frac{2}{4}$.	Finding a $\frac{1}{3}$, $\frac{1}{4}$, $\frac{2}{4}$ and $\frac{3}{4}$ set of objects (less than 20 objects). $\frac{1}{3}$ of 9 cubes = 3	$\frac{1}{2} \text{ of 6 cubes = 3}$	1/2 of 6 cubes = 3 6 ÷ 2 = 3	Leo lost $\frac{1}{2}$ his marbles in a game. This is what he has left. How many did he start with?

Stage 3	Recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10.	Any combination of ten objects can be used to represent tenths.	$\frac{3}{10}$ $\frac{3}{10}$ $\frac{3}{10}$	$\frac{1}{10}$ Complete the part whole model. $\frac{5}{10} + \underline{\qquad} = \frac{10}{10}$	Fill in the missing values. Explain how you got your answers.
Stage 3	Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators	Fractical Fractical Fractical Fractical Fractical Fractical Step 1 Duncle 12 curbes inte 3 hoaps Jaceles Step 2 Highlight 2 heaps / curbes Sep 2 Highlight 2 heaps / curbes	$\frac{2}{3} \text{Drawnings} \\ \frac{2}{3} \text{df} 12 \\ \text{Step 1: } 12 = 3 \\ \text{O} \text{O} \text{O} = 4 \\ \text{Step 2: } 4 \times 2 \\ \text{O} \text{O} \text{O} \text{O} \\ \text{Highlight 2 and} \\ \text{rand the number} \\ \text{of dots = 8} \\ \text{Of dots = 8} \\ \text{O} \text{O} \text{O} \text{O} \\ \text{O} \text{O} \text{O} \text{O} \text{O} \\ \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \\ \text{O} \text{O} $	$\frac{1}{5}$ of 15 sweets = 3 as 15 ÷ 5 = 3 $\frac{3}{5}$ of 15 sweets = 9 as 15 ÷ 5 = 3 and 3 x 3 =9	True or false? 2/10 of 20cm = 2cm 4/10 of $40\text{cm} = 4\text{cm } 3/5 \text{ of}$ 20cm = 12cm This is $\frac{2}{5}$ of a bag of marbles. How many marbles are in a full bag?

	Recognise that		Which of the following statements are correct?	$\frac{1}{10}$ of 60 = 0.6 because 60 ÷ 100 = 0.6	
Ctana A	hundredths arise when dividing an object by one hundred and dividing tenths by ten	Using base 10, children can show hundredths. Base 10 can also be used to show the link between tenths and hundredths. If the whole bead string represents one whole, what decimal is represented by the highlighted part? Can you represent this on a 100 square?	 20 hundredths is equivalent to 2 tenths. 2 hundredths is equivalent to 20 tenths. 2 hundredths is equivalent to 20 tenths. 	$\frac{1}{10}$ of 70 = 0.7 so $\frac{1}{100}$ of 70 = 0.07	What hundredths are the arrows pointing to?
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Recognise and use thousandths and relate them to tenths and hundredths.	Using base 10 with the thousand cube as a whole, children can show thousandths. Base 10 can also be used to show the link between tenths, hundredths and thousandths.	Use the images to help you fill in the third model and the blanks.	$\frac{7}{10} = \frac{100}{100} = \frac{1000}{1000}$	What do you notice? One tenth of £41 One hundredth of £41 One thousandth of £41 Continue the pattern What do you notice? 0.085 + 0.015 = 0.1 0.075 + 0.025 = 0.1 0.065 + 0.035 = 0.1 Continue the pattern for the next five number sentences.

Comparing fractions

Finding fraction and decimal equivalence

Objectives	Concrete	Pictorial	Abstract	Challenges
Recognise tenths as fractions and decimals	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 10 Use the place value counters and tens frames to complete the fraction and decimal.	0 0.2 0.4 0.6 0.8 1 True or false? The arrow shows 0.5	$\frac{3}{10} = $ 0.7 =	Which is the odd one out? A. 5 10 C. 0.5 D. Tenths C. 0.5 Convince me.
Recognise and write decimal equivalents to $\frac{1}{4}, \frac{1}{2}$ and $\frac{3}{4}$	Use base 10 to see how many hundredths are needed to cover $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{3}{4}$ and this can be used to show the decimal equivalence.	$\frac{1}{4} = 0.25$ $\frac{1}{2} = 0.5$ $\frac{3}{4} = 0.75$	$\frac{1}{4} = 0.25$ $\frac{1}{2} = 0.5$ $\frac{3}{4} = 0.75$	Ordering Put these numbers in the correct order, starting with the smallest. $\frac{1}{4}$ 0.75 5/10 Explain your thinking

	Associate a				Anoth	er an	d ano	ther
Stage 6	fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction	0.25 0.25 0.25 Quarters	3 slices of pie 'out of' 8 $\frac{3}{8}$	$\frac{3}{8}$ 3 'out of' 8 is the same as 3 'divided by' 8 $3 \div 8 = 0.375$ $So \frac{3}{8} = 0.375$	Write which less th Compl 1 8 0.375	a unit has a han O.! ete the ??? ete the	frac value 5? e patte 3 8 ??? table	ern 4 8 7??
	(e.g. 3 / 8)							

Equivalent fractions

	Objectives	Concrete	Pictorial	Abstract	Challenges
	Write	Finding a $\frac{1}{2}$, $\frac{1}{4}$, $\frac{2}{4}$ and $\frac{3}{4}$ set of objects	$\frac{1}{2}$ of 6 cubes = 3	$\frac{1}{2}$ of 6 cubes = 3	
	simple	(less than 20 objects).	2	6 ÷ 2 = 3	
	fractions		WHOLE (6) 2		
	for	$\frac{1}{3}$ of 9 cubes = 3	3 3		
	example, 1				
	of 6 = 3 and		-112		Leo lost ± his
	∾ recognise		$\overline{7}(2) = 3$		This is what he has
	the the		(6)		left. How many did
Ů	o equivalence		2-3		he start with?
	of $\frac{1}{2}$ and a		WHOLE		
	$\frac{2}{4}$.	3 3	6 into 2		
	-		hoops		
			-the second s		
-	Recognise		East the second set factors	Images can be used to	Here is a diagram showing $\frac{1}{2}$
	and show,		Spor the editionence human	identify equivalent fractions.	2
	using	A A			
	m diagrams,	1 whole 11 + +			Draw 3 more diagrams
Stone	equivalent fractions	2 4 4	$0 \frac{1}{3} \frac{2}{3} 1$	1	showing $\frac{1}{2}$ and write
	with small	How many quarters are equivalent to a		<u>+</u> _ U _ U	the equivalent
	denominato			$2^{-}6^{-}12$	fractions.
	rs				

Adding and subtracting fractions

	Objectives	Concrete	Pictorial	Abstract	Challenges
Stride 3	Add and subtract fractions with the same denominator within one whole		$+ \qquad \qquad$	$\frac{5}{7} + \frac{1}{7} = \frac{6}{7}$ $\frac{5}{8} - \frac{2}{8} = \frac{3}{8}$	What must be obtain to make a provided to make a provided to the obtained of t
Stride 4	Add and subtract fractions with the same denominator	$\frac{1}{6} \text{ whole } + \frac{1}{6} = \frac{1}{6}$	$\frac{4}{7} + \frac{6}{7} = $	$\frac{3}{8} + \frac{6}{8} = \frac{2}{8} + \frac{2}{8} = \frac{2}{8}$	Use the digit cards to complete this calculation. You can use each card more than once if you wish. 5 7 12 3 15 = -

Add and subtract fractions with the same denominator (see Stages 3 + 4) and multiples of the same number	$+ \frac{5}{20} = \frac{13}{20}$ $+ \frac{1}{4} = \frac{13}{20}$	Step 1Step 2Step 3 $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{8}$ Draw the fraction with the smaller denominator. Shade the fraction.Split the model to create the scond denominator. Shade the fraction.Now the fractions have the same dmorninator. Shade the fraction. $\frac{1}{4} + \frac{3}{8} =$ $\frac{1}{4} + \frac{3}{8} =$ $\frac{1}{2} + \frac{3}{8} =$ $\frac{1}{2} + \frac{3}{8} =$ Step 1Step 2Step 3 $\frac{1}{3}$ $\frac{4}{12}$ $\frac{1}{3} - \frac{1}{12} = \frac{3}{12}$ $\frac{1}{3}$ $\frac{4}{12}$ $\frac{1}{3} - \frac{1}{12} = \frac{3}{12}$	$\frac{4}{12} + \frac{1}{3} = \square$ $\frac{3}{8} + \frac{5}{24} = \square$	Using the numbers 3, 4, 5 and 6 only once, make this sum have the smallest possible answer:
Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number (e.g. 2 / 5 + 4 / 5 = 6 / 5 = 11 / 5)	$\begin{array}{c} \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{7}{2} = 3\frac{1}{2}$ because 7 + 2 = 3 with 1 half left over $2\frac{1}{3} = \frac{7}{3}$ because 2 x 3 = 6 with 1 third left to add	$\frac{3}{4}$ and $\frac{1}{4} = 4/4 = 1$ 4/4 and $\frac{1}{4} = 5/4 = 1 \frac{1}{4}$ 5/4 and $\frac{1}{4} = 6/4 = 1 \frac{1}{2}$ Continue the pattern up to the total of 2.

	Add and subtract		$1^{1} + 1 = 1^{5}$	The answer is 1 2/5 , what is the question?
	fractions with different	$1\frac{1}{2}=\frac{3}{2}$, $\frac{3}{2}=\frac{9}{6}$	$1 \frac{1}{2} \frac{1}{3} \frac{1}{6}$ because $1 \frac{1}{6} = \frac{3}{6}$	Another and another
90	denominator	2 2 2 2 0	2 2	fractions with a total
itad	s and mixed		3 9 , 1 2	of 3 4/5 and
U.	numbers,		-=- and $-=-$	another, and
	using the			another,
	concept of		$e^{9} + \frac{2}{2} = \frac{11}{11} = 1\frac{5}{11}$	
	equivalent	$\frac{1}{2} = \frac{2}{2}$	6 6 6 6	
	fractions	3 6		

<u>Multiplying and dividing fractions</u>

	Objectives	Concrete	Pictorial	Abstract	Challenges
Stage 5	Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	$6 \text{ lots of } \frac{3}{4}$	Change to a mixed number:	$\frac{3}{4} \times 6 = \frac{18}{4}$ Change to a mixed number: $\frac{18}{4} = 4\frac{2}{4}$	Continue the pattern: $\frac{1}{4} \times 3 = \frac{1}{4} \times 4 = \frac{1}{4} \times 5 =$ Continue the pattern for five more number sentences. How many steps will it take to get to 3? The answer is 2 $\frac{1}{4}$, what is the question Give your top tips for multiplying fractions
Stage 6	Multiply simple pairs of proper fractions, writing the answer in its simplest form	$\frac{1}{2} \text{ of } \frac{3}{4}$	$\frac{1}{2} \text{ of } \frac{3}{4}$	$\frac{1}{2} \times \frac{3}{4} = \frac{3}{8}$ multiply the numerators $\frac{2}{5} \times \frac{5}{6} =$ multiply the denominators $\frac{10}{30} = \frac{1}{3}$	Can you write your top tips for multiplying proper fractions?

Finding fractions of an amount

Objectives	Concrete	Pictorial	Abstract	Challenges
 Find a ¹/₂ of a quantity. Find a ¹/₄ of a quantity. 	Finding a half and a quarter of an quantity: Find a half of the tower: The second seco	Finding a half and a quarter of an quantity: Find half of the amounts. Find half of the amounts. Find half of the amounts.	Writing a number sentence alongside the concrete or pictorial representation: $\frac{1}{2}$ of 6 =	Mr. White has asked his class to put one quarter of the balls into the hoop.

Find $\frac{1}{3}$, $\frac{1}{4}$, $\frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity.

Using numicon to find $\frac{1}{4}$ of 12:

Which numicon piece fits into 12 exactly 4 times - 3 so a $\frac{1}{4}$ of 12 is 3. To find $\frac{3}{4}$ count up the value of 3 of these 3 pieces = 9.

Find $\frac{2}{4}$ of 8:

First, use the multilink to find $\frac{1}{4}$ (the 8 cubes have been shared into 4 groups). Then, circle 2 of the groups as you want to find $\frac{2}{4}$ and count the total number of cubes.

Find $\frac{2}{4}$ of 12:

First, share the dots between 4 circles to find $\frac{1}{4}$ and then highlight two of the groups as you want to find $\frac{2}{4}$ and count the total number of dots.

Writing a number sentence alongside the concrete or pictorial representation. Leo lost $\frac{1}{2}$ his marbles in a game. This is what he has left. How many did he start with?

Sam and Faye each have a piece of ribbon that they have cut into quarters.

How long was Sam's whole piece of ribbon?

How long was Faye's whole piece of ribbon?

Stage 3	Find a fractions of a discrete set of objects: (unit fractions and non-unit fractions with small denominators).	For Stages 3 and 4, place value counters can be used to support division when finding fractions of a quantity. For example: Using a bar model and place value counters to find $\frac{1}{4}$ of 84: To find $\frac{3}{4}$ of 84, the total of the place value counters in 3 of the boxes can be calculated.	3 3	$\frac{1}{5}$ of 15 sweets = 3 because 15 ÷ 5 = 3. $\frac{2}{5}$ of 15 swets = 6 because 15 ÷ 5 = 3 and 3 x 2 is 6.	Kayleigh has 12 chocolates. On Friday, she ate $\frac{1}{4}$ of her chocolates and gave one to her mum. On Saturday, she ate $\frac{1}{2}$ of her remaining chocolates, and gave one to her brother. On Sunday, she ate $\frac{1}{3}$ of her remaining chocolates. How many chocolates does Kayleigh have left?
Stage 4	Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non- unit fractions.	= 63.	$\frac{1}{7} \text{ of } 56 = 56 \div$ Once $\frac{1}{7}$ has been calculated, this can be used to find $\frac{2}{7}, \frac{3}{7}$ etc. For $\frac{3}{7}$, 3 boxes can be circled and their totals added up. Dots could be drawn in the boxes to support the division of 56 by 7.	$\frac{2}{3} \text{ of £18} \\ \text{£18} \div 3 = \text{£6} \\ \text{£6} \times 2 = \text{£12}$	How many ways can you make the statement correct? $\frac{2}{9}$ of 81 > $\frac{3}{4}$ of Complete the missing number. $\frac{1}{6}$ of $= 42$