Ocklynge Junior School

Progression in Fractions

Key vocabulary when teaching fractions

Word	Definition	Example
Fraction	A part of a whole number, quantity or shape. 2. Expressing a division relationship between two integers in the form $\frac{a}{2}$	I have shared my sweets into four equal parts. Everyone will get a fraction of the whole quantity of sweets. One group is a quarter of the whole
Numerator	The number written above the fraction line in a fraction. It indicates the specified number of parts out of the whole. In a division context, it is the dividend.	In the fraction one quarter, one is the numerator.
Denominator	The number written below the fraction line in a fraction. In a measure context, it indicates the number of equal parts into which the whole is divided. In a division context, it is the divisor.	In the fraction one quarter, four is the denominator.
Unit fraction	A fraction with a numerator of one.	One-third is a unit fraction.
Non-unit fraction	A fraction with a numerator greater than one.	Two thirds is a non-unit fraction.
Equivalent	Equivalent means having the same value. Equivalent fractions have the same value.	$\frac{2}{4}=\frac{1}{2}$
Proper fraction	A fraction with a value less than one.	$\frac{1}{2}, \frac{3}{4}, \frac{5}{8}$
Improper fraction	A fraction where the numerator is bigger than the denominator. These fractions are therefore greater than one whole.	$\frac{12}{11}$
Mixed numbers	Numbers consisting of an integer and fractional part.	$1 \frac{1}{2} ; 3 \frac{3}{4}$
Decimal fraction	A fraction expressed in its decimal form.	Half written as a decimal fraction is 0.5
Proportion	A comparison between two or more parts of a whole or group. Proportion expresses a part-whole relationship. This may be represented as a fraction, a percentage or a decimal.	Two thirds of a class were boys. The proportion of the class that is girls is one third.

Counting in fractional steps

	Objectives	Concrete	Pictorial	Abstract	Challenges
$\begin{gathered} \sim \\ v \\ \mathbf{0} \\ \stackrel{0}{6} \end{gathered}$	Pupils should count in fractions up to 10 , starting from any number and using the $1 / 2$ and $2 / 4$ equivalence on the number line.	How many halves in?		 By counting in halves, fill in the missing numbers. 1. 2. $6 \frac { 1 } { 2 } \longdiv { 7 } \sqrt { 7 \frac { 1 } { 2 } } 8 2 5$	Spot the mistake 7, $7 \frac{1}{2}, 8,9,108 \frac{1}{2}$, $8,7,6 \frac{1}{2}$, ... and correct it What comes next? $5 \frac{1}{2}, 6 \frac{1}{2}, 7 \frac{1}{2}, \ldots . ., \ldots$. $9 \frac{1}{2}, 9,8 \frac{1}{2}$,
$$	Count up and down in tenths	Lucie is using counters to show tenths. Using tens frames and counters, show the next tenth in the sequence.	Draw the next tenth in the sequence.	$\frac{5}{10}$ $\frac{6}{10}$ $\frac{7}{10}$ $\frac{8}{10}$ $\frac{9}{10}$	I count backwards four tenths. My answer is $\frac{10}{10}$. What fraction did I start with? What comes next? $\begin{gathered} \text { 6/10, 7/10, 8/10, } \\ \ldots . .12 / 10,11 / 10, \ldots . . \end{gathered}$

Using base 10, children can show counting in hundredths.
Base 10 can also be used to show the link between tenths and hundredths.

Use a hundred square to shade in a sequence of hundredths.

As a class, count up and down in hundredths. Children to continue the following pattern: $1 \div 100=\frac{1}{100}, 2 \div 100=\frac{2}{100^{\prime}}$ What do they notice? What is a hundredths? How many hundredths make up a whole?

Spot the mistake sixty hundredths, seventy hundredths, eighty hundredths, ninety hundredths, eleven hundredths ... and correct it.

$\begin{aligned} & \boldsymbol{N} \\ & \mathcal{\psi} \\ & \dot{0} \\ & \dot{\boldsymbol{n}} \end{aligned}$	Recognise, find, name and write fractions $\frac{1}{3}$, $\frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity			$\begin{aligned} & \frac{1}{2} \text { of } 6 \text { cubes }=3 \\ & 6 \div 2=3 \end{aligned}$	Which of these shapes are $\frac{1}{2}$ green?
$\begin{aligned} & \boldsymbol{N} \\ & \mathcal{y} \\ & \dot{0} \\ & \dot{\theta} \end{aligned}$	Write simple fractions for example, $\frac{1}{2}$ of $6=3$ and recognise the equivalence of $\frac{1}{2}$ and $a \frac{2}{4}$.	Finding a $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ set of objects (less than 20 objects). $\frac{1}{3}$ of 9 cubes $=3$	$\frac{1}{2}$ of 6 cubes $=3$	$\begin{aligned} & \frac{1}{2} \text { of } 6 \text { cubes }=3 \\ & 6 \div 2=3 \end{aligned}$	Leo lost $\frac{1}{2}$ his marbles in a game. This is what he has left. How many did he start with?

Recognise and
use fractions
as numbers:
unit fractions
and non-unit
fractions with
small

denominators. | What fractions are being |
| :--- |
| represented by the numicon? |
| What different fractions can you |
| represent with these classroom |
| objects? |

m \mathcal{O} 0 ¢	Recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10.	Any combination of ten objects can be used to represent tenths. There are ten sweets in a packet. Five of them are striped. Write the number of stripy sweets as a fraction. Counters and tens frames can also be used to represent tenths.			Complete the part whole model. $\frac{5}{10}+\ldots=\frac{10}{10}$	Fill in the missing values. Explain how you got your answers.
m \mathcal{O} 0 ¢	Recognise, find and write fractions of a discrete se \dagger of objects: unit fractions and non-unit fractions with small denominators		Dramungs $\frac{2}{3}$ of 12 $\sec 1: 12-3$ (3) (i) $3=4$ Step 2: 4×2 Highuight 2 and cont the number of dots $=8$		$\frac{1}{5}$ of 15 sweets $=3$ as $15 \div 5=3$ $\frac{3}{5}$ of 15 sweets $=9$ as $15 \div 5=3 \text { and } 3 \times 3=9$	True or false? $2 / 10$ of $20 \mathrm{~cm}=2 \mathrm{~cm} 4 / 10$ of $40 \mathrm{~cm}=4 \mathrm{~cm} 3 / 5$ of $20 \mathrm{~cm}=12 \mathrm{~cm}$ This is $\frac{2}{5}$ of a bag of marbles. How many marbles are in a full bag?

Comparing fractions

Compare
and order
fractions,
including
fractions >1

Finding fraction and decimal equivalence

Use place value counters and base 10 to represent the relationship between fraction hundredths and decimals hundredths 0.01
What fraction is being shown in both representations? Can you convert this in to a decimal?

The fractionis the same as the decimal \qquad

Pictorial Representation	Decimal	Decimal - expanded form	Fraction	Fraction-expanded form	In words
	4.251	$4+0.2+0.05+0.001$	$4 \frac{251}{1000}$	$4+\frac{2}{10}+\frac{5}{100}+\frac{1}{1000}$	four ones, two tenths, five hundredths and one thousandth
	4.512				
			$4 \frac{25}{1000}$		
				$4+\frac{5}{10}+\frac{1}{1000}$	

June is converting decimals to thousandths

$$
0.345=\frac{\square}{1000}
$$

Use June's method to convert the decimals to thousandths
0.276
0.029

Another and another Write a fraction with a denominator of one hundred which has a value of more than 0.75 ?

Ordering

Put these numbers in the correct order, starting with the largest. 7/10, 0.73, 7/100, 0.073, 0.7

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \dot{\theta} \end{aligned}$	Associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. $3 / 8$)			3 slices of pie 'out of' 8$\frac{3}{8}$	$\frac{3}{8}$ 3 'out of' 8 is the same as 3 'divided by' 8 $\begin{aligned} 3 \div 8 & =0.375 \\ \text { So } \frac{3}{8} & =0.375 \end{aligned}$	Another and another Write a unit fraction which has a value of less than 0.5? Complete the pattern			
				$\frac{1}{8}$		$\frac{2}{8}$	$\frac{3}{8}$	$\frac{4}{8}$	
				0.375		???	? ? ?	? ? ?	
				Complete the table.					

Equivalent fractions

	Objectives	Concrete	Pictorial	Abstract	Challenges
	Write simple fractions for example, $\frac{1}{2}$ of $6=3$ and recognise the equivalence of $\frac{1}{2}$ and a $\frac{2}{4}$.	Finding a $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ set of objects (less than 20 objects). $\frac{1}{3} \text { of } 9 \text { cubes }=3$	$\frac{1}{2}$ of 6 cubes $=3$	$\begin{aligned} & \frac{1}{2} \text { of } 6 \text { cubes }=3 \\ & 6 \div 2=3 \end{aligned}$	Leo lost $\frac{1}{2}$ his marbles in a game. This is what he has left. How many did he start with?
	Recognise and show, using diagrams, equivalent fractions with small denominato rs	How many quarters are equivalent to a half?		Images can be used to identify equivalent fractions.	Here is a diagram showing $\frac{1}{2}$ Draw 3 more diagrams showing $\frac{1}{2}$ and write the equivalent fractions.

| Recognise
 and show,
 using
 diagrams,
 families of
 common
 equivalent
 fractions |
| :--- | :--- |

Adding and subtracting fractions

	Objectives	Concrete	Pictorial	Abstract	Challenges
m \vdots	Add and subtract fractions with the same denominator within one whole		\qquad $\square \square \frac{5}{7}-\frac{\square}{7}=\frac{\square}{7}$ $\square \frac{4}{8}-\frac{\square}{8}=\frac{\square}{8}$	$\begin{aligned} & \frac{5}{7}+\frac{1}{7}=\frac{6}{7} \\ & \frac{5}{8}-\frac{2}{8}=\frac{3}{8} \end{aligned}$	What fractions could you have added together to get this answer?
$\begin{gathered} \dot{v} \\ \mathcal{U} \\ \dot{B} \\ \dot{\Delta} \end{gathered}$	Add and subtract fractions with the same denominator	$1 \text { whole }+\frac{1}{6}=1 \frac{1}{6}$ $\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{7}{6}$	$\frac{4}{7}+\frac{6}{7}=$ \square $\frac{11}{8}-\frac{5}{8}=\square$	$\frac{3}{8}+\frac{6}{8}=\frac{\square}{8}+\frac{2}{8}=\frac{\square}{8}$	Use the digit cards to complete this calculation. You can use each card more than once if you wish. \square \square

Add and
subtract
fractions
with the
same
denominator
(see Stages
$3+4$ and
multiples of
the same
number

Add and
subtract
fractions
with
different
denominator

O
s and mixed
numbers,
using the
concept of
equivalent
fractions

Multiplying and dividing fractions

	Objectives	Concrete	Pictorial	Abstract	Challenges
	Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	6 lots of $\frac{3}{4}$	Change to a mixed number:	$\frac{3}{4} \times 6=\frac{18}{4}$ Change to a mixed number: $\frac{18}{4}=4 \frac{2}{4}$	Continue the pattern: $\frac{1}{4} \times 3=\frac{1}{4} \times 4=\frac{1}{4} \times 5=$ Continue the pattern for five more number sentences. How many steps will it take to get to 3 ? The answer is $2 \frac{1}{4}$, what is the question Give your top tips for multiplying fractions
	Multiply simple pairs of proper fractions, writing the answer in its simplest form	$\frac{1}{2}$ of $\frac{3}{4}$	$\frac{1}{2} \text { of } \frac{3}{4}$		Can you write your top tips for multiplying proper fractions?

Divide
proper
fractions by
whole
numbers

	Objectives	Concrete	Pictorial	Abstract	Challenges
$\begin{gathered} \stackrel{(}{\overleftarrow{0}} \\ \stackrel{+}{\omega} \end{gathered}$	- Find $a \frac{1}{2}$ of a quantity. - Find $a \frac{1}{4}$ of a quantity.	Finding a half and a quarter of an quantity: Find a half of the tower: Find a quarter of 8 counters:	Finding a half and a quarter of an quantity: Find half of the amounts. Beads and marbles can be used as a concrete resource prior to the pictorial representations. Other pictorial representations include drawing circles to represent objects and arrays.	Writing a number sentence alongside the concrete or pictorial representation: $\frac{1}{2} \text { of } 6=\square$	Mr. White has asked his class to put one quarter of the balls into the hoop. Im going to put one ball in the hoop. Do you agree with Ben?

